The stability of networks --- towards a structural dynamical systems theory
نویسندگان
چکیده
The need to build a link between the structure of a complex network and the dynamical properties of the corresponding complex system (comprised of multiple low dimensional systems) has recently become apparent. Several attempts to tackle this problem have been made and all focus on either the controllability or synchronisability of the network — usually analyzed by way of the master stability function, or the graph Laplacian.. We take a different approach. Using the basic tools from dynamical systems theory we show that the dynamical stability of a network can easily be defined in terms of the eigenvalues of an homologue of the network adjacency matrix. This allows us to compute the stability of a network (a quantity derived from the eigenspectrum of the adjacency matrix). Numerical experiments show that this quantity is very closely related too, and can even be predicted from, the standard structural network properties. Following from this we show that the stability of large network systems can be understood via an analytic study of the eigenvalues of their fixed points — even for a very large number of fixed points.
منابع مشابه
Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملApplication of Dynamical Systems in Cancer Therapy
In this paper, we have proposed and analyzed a mathematical model for the study of interaction between tumor cells and oncolytic viruses. The model is analyzed using stability theory of differential equations.
متن کاملFractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.2145 شماره
صفحات -
تاریخ انتشار 2012